The Novel $\mathbf{R}_{\mathbf{2}} \mathbf{B a}_{1.25} \mathbf{N i O}_{5.25}(\boldsymbol{R}=\mathbf{T m}, \mathbf{Y b}, \mathrm{Lu})$ Structure Type

J. A. CAMPÁ,* E. GUTIERREZ-PUEBLA,$\dagger \ddagger$ M. A. MONGE $\uparrow+\ddagger$
I. RASINES, $\dagger^{, 1}$ and C. RUIZ VALERO ${ }^{\dagger} \ddagger$
\dagger Instituto de Ciencia de Materiales, CSIC, Serrano 113, 28006 Madrid, Spain; *Departamento de Cristalografia y Mineralogia, Facultad de Ciencias Geológicas, UCM, 28040 Madrid, Spain; and \ddagger Grupo de Difracción del CSIC, Facultad de Ciencias Químicas, UCM, 28040 Madrid, Spain

Received April 9, 1991; in revised form July 8, 1991

Abstract

Crystals of isostructural $R_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}(R=\mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu})$ have been grown and characterized. The crystal structure for $R=\mathrm{Yb}$ has been established from X-ray single crystal diffraction data. $R_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$ are tetragonal, S.G. $I 4 / m$ (No. 87), with unit-cell parameters $a=b=13.582(3)$, 13.553(4), and 13.549(3) $\AA, c=5.656(2), 5.638(2)$, and $5.633(2) \AA, V=1043.4(8), 1035.6(9)$, and 1034.1(8) \AA^{3} for $R=\mathrm{Tm}, \mathrm{Yb}$, and I u, respectively; and $Z=8$. Interatomic distances and principal angles are given for the Yb compound. The crystal structure of $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$ is formed by square NiO_{5} pyramids, trigonal YbO_{7} prisms capped on one rectangular face, tetragonal bicapped $\mathrm{Ba}(1) \mathrm{O}_{10}$ prisms, and irregular $\mathrm{Ba}(2) \mathrm{O}_{10}$ polyhedra. A comparison is made between this structure type and those of $\mathrm{Yb}_{2} \mathrm{BaNiO}_{5}$ and $\mathrm{Y}_{2} \mathrm{BaNiO}_{5}$: the $R \mathrm{O}_{7}$ polyhedra look similar for the three types, and $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$ contains NiO_{5} groups similar to those of $\mathrm{Yb}_{2} \mathrm{BaNiO}_{5}$ as well as $\mathrm{Ba}(2) \mathrm{O}_{10}$ units which are shaped like those present at $\mathrm{Y}_{2} \mathrm{BaNiO}_{5}$. © 1991 Academic Press, Inc.

Introduction

The $R_{2} \mathrm{BaNiO}_{5}$ oxides ($R=\mathrm{Y}, \mathrm{Sm}, \mathrm{Gd}$, Ho, Er, Tm) crystallize in the $\mathrm{Nd}_{2} \mathrm{BaNiO}_{5}$ structure type ($1-6$) with rather one-dimensional chains of vertex-sharing NiO_{6} octahedra which show an unusual twofold distortion: the $\mathrm{Ni}-\mathrm{O}$ distances to the two axial oxygen atoms are considerably shorter, 0.3 \AA, than those to the four equatorial oxygens, and these are distorted from the right angles of a regular octahedron to $79.0(2)^{\circ}$ and $77.7(6)^{\circ}$ for $R=Y$, Er, respectively (5). These distortions are related to the interesting magnetic properties of these oxides (5, 7), and the distances and angles determined

[^0]for $R=G d$ have been recently shown (8) to be understandable using a model which combines results from molecular-orbital theory, tight-binding band-structure calculations, and empirical atom-atom potential arguments. On the other hand, the $R_{2} \mathrm{BaNiO}_{5}$ compounds of Yb and Lu crystallize $(9,3)$ in the $\mathrm{Y}_{2} \mathrm{BaCuO}_{5}$ structure type, the green phases that frequently appear associated to the 123 superconducting oxides. Hence, in $R_{2} \mathrm{BaNiO}_{5}(R=\mathrm{Yb}, \mathrm{Lu})$ the Ni atoms show a square pyramidal coordination with $\mathrm{Ni}-\mathrm{O}$ distances between 1.98 and $2.07 \AA(R=\mathrm{Yb})(9)$ or $1.96-2.05 \AA(R=$ $\mathrm{Lu})$ (3). Because of their interest in these Ni oxides the authors tried to grow crystals of those formed by the three smallest lanthanides, $R=\mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$, and obtained three

TABLE I
Crystal Data for Tetragonal $R_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$, Space Group $14 / m$ (No. 87), $Z=8$

R	Tm	Yb	Lu
M (formula weight)	652.2	660.4	664.3
$a=b, \AA$	$13.582(3)$	$13.553(4)$	$13.549(3)$
c, \AA	$5.656(2)$	$5.638(2)$	$5.633(2)$
V, \AA	$1043.4(8)$	$1035.6(9)$	$1034.1(8)$
$F(000)$	2224	8.40	2256
$\rho($ calcd $), \mathrm{g} \mathrm{cm}^{-3}$	8.30	486.2	8.53
$\mu, \mathrm{~cm}^{-1}$	472.3	$0.025 \times 0.025 \times 0.042$	$0.035 \times 0.030 \times 0.030$
Cryst dimens, mm	$0.030 \times 0.030 \times 0.040$	0.0	

unknown compounds whose crystallographic characterization is the object of this paper. After determining the crystal structure of the Yb compound, they verified that single crystals of the three oxides ($R=\mathrm{Tm}$, Yb, Lu) are isostructural.

Experimental Section

Crystal growth. Black, needle-like, prismatic $R_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}(R=\mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu})$ crystals were grown by reaction of an excess of Ni metal with a mixture of analytical grade $R_{2} \mathrm{O}_{3}$ and $\mathrm{BaCO}_{3}, R: \mathrm{Ba}=1: 3$, after heating in air for 3 days at $1200^{\circ} \mathrm{C}$ and subsequent quenching.

X-Ray structure determinations. Black crystals ($R=\mathrm{Tm}, \mathrm{Yb}, \mathrm{Lu}$) of prismatic shape were mounted in an Enraf-Nonius CAD 4 diffractometer and were studied using graphite-monochromated $\operatorname{MoK} \alpha$ radiation $(\lambda=0.71069 \AA)$ at $21^{\circ} \mathrm{C}$. The cell dimensions were refined by least-squares fitting the 2θ values of 25 reflections. A summary of the fundamental crystal data is given in Table I. For $R=\mathrm{Tm}, \mathrm{Yb}$ and Lu , an I-cell was determined from the systematic extinctions, and the measurement of the intensities of the equivalent reflections showed tetragonal symmetry. Table II shows the refinement data for the Yb compound, whose intensities were corrected for Lorentz and polarization effects. Scattering
factors for neutral atoms and anomalous dispersion corrections for Yb, Ba, and Ni were taken from the "International Tables for X-Ray Crystallography" (10). The structure was solved by Patterson and Fourier methods. The centrosymmetric space group $14 /$ m (No. 87) was obtained during the course of the structure solution. An empirical absorption correction (11) was applied at the end of the isotropic refinement. The maximum and minimum absorption factors were 1.890 and 0.718 , respectively. Final mixed full-matrix least-squares refinement with anisotropic temperature factors for all atoms except Ol and O 2 , and weights (12) $w=w_{1} w_{2}$, where $w_{1}=1 /\left(a+b\left|F_{0}\right|\right)^{2}$ and $w_{2}=1 /(c+d(\sin \theta / \lambda))$, and the coefficients shown in Table III. A final difference synthesis shows a maximum electron density of $3 \mathrm{e} \AA^{-3}$ located at the $\mathrm{Ba}(1)$ position. Most

TABLE II
Refinement Data for $\mathrm{Y}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$

Scan technique	$\Omega / 2 \theta$
Data collected	$(0,0,0)$ to $(19,19,7)$
Unique data	804
\quad Unique data, $(I)>2$	656
$\sigma(I)$	
Standard reflections	$3 / 57$ reflections
$R_{f}, \%$	4.3
$K_{w f}, \%$	4.9
Average shift/error	0.003

TABLE III
Coefficients for the Weighting Scheme in $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5,25}$

	a	b		c	d
$\left\|F_{0}\right\|<123$	21.65	-0.13	$(\sin \theta) / \lambda<0.40 \AA^{-1}$	4.16	-7.46
$123<\left\|F_{\mathrm{o}}\right\|<1437$	2.72	0.03	$0.40<(\sin \theta) / \lambda<0.71$	0.25	0.88

of the calculations were carried out with the X-ray 80 system (13).

Results and Discussion

Table IV includes the atomic parameters obtained for $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$. Interatomic distances and principal angles are shown in Table V. The coordination polyhedra for the metals are: square NiO_{5} pyramids with Ni atoms at 0.370 (3) \AA from the base and $\mathrm{Ni}-\mathrm{O}$ distances between $1.978 \AA$ and $2.045 \AA$; $\mathrm{Yb}(1) \mathrm{O}_{7}$ and $\mathrm{Yb}(2) \mathrm{O}_{7}$ trigonal prisms monocapped on one rectangular face $\left[\mathrm{Yb}(2) \mathrm{O}_{7}\right.$, slightly smaller than $\mathrm{Yb}(1) \mathrm{O}_{7}$, is shown in Fig. 1]; and tetragonal bicapped $\mathrm{Ba}(2) \mathrm{O}_{10}$ prisms as well as irregular $\mathrm{Ba}(1) \mathrm{O}_{10}$ polyhedra (Fig. 2). The crystal structure of Yb_{2} $\mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$ can be conceived as formed by columns along the c direction. In these, $\mathrm{Ba}(2) \mathrm{O}_{10}$ polyhedra alternate with units that are constituted by four $\mathrm{Yb}(2) \mathrm{O}_{7}$ polyhedra which have in common the apical vertex,

TABLE IV
Atomic Parameters for $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$

$U_{\mathrm{eq}}=(1 / 3) \sum\left[U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j} \cos \left(a_{i}, a_{j}\right) \bar{j} \times 10^{3}\right.$					
Atom	Site	x / a	y / b	z / c	$U_{\text {eq }}$
Yb 1	8 h	$0.2499(1)$	$0.1668(1)$	$0.0000(0)$	$8.0(3)$
Yb 2	8 h	$0.4119(1)$	$0.3569(1)$	$0.0000(0)$	$8.1(3)$
Bal	8 h	$0.1387(1)$	$0.4618(1)$	$0.0000(0)$	$9.7(4)$
Ba 2	2 a	$0.0000(0)$	$0.0000(0)$	$0.0000(0)$	$9.7(7)$
Ni	8 h	$0.0412(2)$	$0.2448(2)$	$0.0000(0)$	$8(1)$
O 1	2 b	$0.5000(0)$	$0.5000(0)$	$0.0000(0)$	$7(5)$
O 2	8 h	$0.3677(10)$	$0.0377(11)$	$0.0000(0)$	$9(2)$
O 3	16 i	$0.1472(7)$	$0.2591(7)$	$0.2456(18)$	$10(2)$
O 4	16 i	$0.1788(7)$	$0.0470(7)$	$0.2476(21)$	$11(2)$

$O(1)$, and thus share triangular faces. This oxygen atom, $\mathrm{O}(1)$, is also an apical vertex of the $\mathrm{Ba}(2) \mathrm{O}_{10}$ polyhedron. Every four of these units, those with equal z value, occupy the vertices of a large square, that is, the (001) face of the unit-cell, and connect each other in the $x y$ plane according to the sequence $\mathrm{Yb}(2)-\mathrm{Yb}(1)-\mathrm{Ni}-\mathrm{Yb}(1)-\mathrm{Yb}(2)$; the $\mathrm{Yb}(2) \mathrm{O}_{7}$ polyhedra share edges, and $\mathrm{Yb}(1) \mathrm{O}_{7}$ and NiO_{5} alternatively have common faces or edges, in such a way that a fifth column raises in the center of the square

TABLE V
Interatomic Distances $d(\AA)$, the Number of Equal Metal-Oxygen Distances (n), and Principal Angles (deg) for $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$

	d	n		d	n
Yb1-O2	2.368	$\times 1$	Bal-04	2.856	$\times 2$
-03	2.329	$\times 2$	-02	2.711	$\times 1$
-04	2.348	$\times 2$	-03	3.207	$\times 2$
-03	2.239	$\times 2$	-02	2.686	$\times 1$
$\mathrm{Yb} 2-\mathrm{O} 1$	2.277	$\times 1$	Ba2-04	2.868	$\times 8$
-03	2.274	$\times 2$	-O1	2.819	$\times 2$
-04	2.286	$\times 2$	$\mathrm{Ni}-\mathrm{O} 3$	2.004	$\times 2$
-04	2.369	$\times 2$	-02	1.978	$\times 1$
Bal --03	3.080	$\times 2$	-04	2.045	$\times 2$
-02	2.820	$\times 2$			
Angles					
	O3-Ni-O3		87.4		
	O3- -02		107.8		
	O3- -04		89.4		
	03- -04		158.9		
	O2- -04		93.0		
		-04	86.1		

Fig. 1. $\mathrm{Yb}(2) \mathrm{O}_{7}$ coordination polyhedron in $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$.
with the same alternance as the other four but displaced a distance of $z=\frac{1}{2}$. Every two adjacent cells house pairs of $\mathrm{Ba}(1) \mathrm{O}_{10}$ polyhedra which share the (O 2)-O(2) edge (upper part of Figure 2) and remain mutually twisted 90° along the c-axis. A schematic representation of the connections between the coordination polyhedra of the metals along the c-axis is shown in Fig. 3.

The crystal structure of $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$ (I) can be compared with those established $(9,5)$ for $\mathrm{Yb}_{2} \mathrm{BaNiO}_{5}$ (II) and $\mathrm{Y}_{2} \mathrm{BaNiO}_{5}$
(III) looking at the coordination polyhedra present in each one. The $R \mathrm{O}_{7}(R=\mathrm{Yb}$, Y) polyhedra are very similar in the three cases, and show $R-\mathrm{O}$ average distances of $2.310 \AA$ for I and II ($R=\mathrm{Yb}$), and 2.531 \AA for III ($R=Y$ Y). I and II include two kinds of YbO_{7} polyhedra, one of them slightly smaller than the other. On the contrary, all the YbO_{7} polyhedra are equally sized in III. The Ni coordinations are either square pyramidal (I, II) or flattened octahedral (III) with mean $\mathrm{Ni}-\mathrm{O}$ distances (\AA) of $2.015,2.022$, and 2.082 , for I, II, and III, respectively. The NiO_{5} quadrangular pyramids (I, II) show similar $\mathrm{Ni}-\mathrm{O}$ distances and are isolated units, which join themselves through YbO_{7} and BaO_{10} polyhedra as above indicated and can be seen in Fig. 3. On the contrary, the NiO_{6} octahedra (III) form chains by sharing apical vertices, these lying from the Ni atom at a distance $0.3 \AA$ smaller than the equatorial oxygens. As II and III include only one kind of Ba polyhedron, BaO_{11} in II and BaO_{10} in III, with average $\mathrm{Ba}-\mathrm{O}$ distances (\AA) of 2.940 and 2.923 , respectively, there are two different Ba atoms in I, eight $\mathrm{Ba}(1)$ and two $\mathrm{Ba}(2)$ per unit-cell. Both coordinate to 10 oxygens at average

Fig. 2. BaO_{10} coordination polyhedra (14) for $\mathrm{Ba}(1)$ (right) and Ba (2) (left) in $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$.

Fig. 3. Schematic representation of the connections along the c-axis between the coordination polyhedra of the metals in $\mathrm{Yb}_{2} \mathrm{Ba}_{1.25} \mathrm{NiO}_{5.25}$.
distances (\AA) of 2.932 and 2.858 , respectively. In conclusion, the novel structure type can be considered as an intermediate between the $\mathrm{Yb}_{2} \mathrm{BaNiO}_{5}$ and $\mathrm{Y}_{2} \mathrm{Ba}$ NiO_{5} types.

Acknowledgments

We acknowledge the financial aid of the CICYT from the project MAT 88-250-C2 and that of the Fundación Domingo Martínez, which made this work possible.

References

1. S. Schiffler and H. Müller-Buchsbaum, Z. Anorg. Allg. Chem. 532, 10 (1986).
2. S. Schiffler and H. Müller-Buchsbaum, Monatsh. Chem. 118, 741 (1987).
3. H. Müller-Buchsbaum and I. Rüter, Z. Anorg. Allg. Chem. 572, 181 (1989).
4. J. Amador, E. Gutierrez-Puebla, M. A. Monge, I. Rasines, J. A. Campá, J. M. Gómez de Salazar, and C. Ruiz-Valero, Solid State Ionics 32/33, 123 (1989).
5. J. Amador, E. Gutierrez-Puebla, M. A. Monge, I. Rasines, C. Ruiz-Valero, F. Fernández, R. Saez-Puche, and J. A. Campá. Phys. Rev. B 42, 7918 (1990).
6. J. A. Alonso, J. Amador, I. Rasines, and J. L. Soubeyroux, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C47, 249 (1991).
7. J. A. Alonso, J. Amador, J. L. Martínez, I. Rasines, J. Rodriguez-Carvaial, and R. Saez-Puche, Solid State Commun. 76, 467 (1990).
8. J. K. Burdett and J. F. Mitchell, J. Am. Chem. Soc. 112, 6571 (1990).
9. S. Schiffler and H. Müller-Buchsbaum, Z. Anorg. Allg. Chem. 540/541, 243 (1986).
10. "International Tables for X-Ray Crystallography,' Vol. IV, p. 72, Kynoch, Birmingham, U.K. (1974).
11. N. Walker and D. Stuart, Acta Crystallogr., Sect. A: Found. Crystallogr. A39, 158 (1983).
12. M. Martínez-Ripoll and F. H. Cano, "PESOS Program," Instituto Rocasolano, CSIC, Madrid, Spain (1975).
13. J. M. Stewart, "The X RAY 80 System," Computer Science Center, University of Maryland, College Park, Maryland (1985).
14. C. K. Johnson, "ORTEP, A Fortran ThermalEllipsoid Plot Program for Crystal Structure Illustrations," Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN (1965).

[^0]: ${ }^{1}$ To whom correspondence should be addressed.

